List of Symbols/Notation#

This page contains a list of symbols used in all the following chapters

Notation#

a or \(a\) - scalar

\(\mathbf{v}\) or \(\bar{\mathbf{v}}\) - vector

\(\mathbf{T}\) - tensor of rank > 1

\(\bar{\bar{\mathbf{T}}}\) or \(\underline{\underline{\mathbf{T}}}\) - rank 2 tensor

\(\mathbf{\hat{e}}_v\) - unit vectors along direction of \(\mathbf{v}\)

\(\mathbf{\hat{n}}\) - unit vector in direction of outward facing normal for a plane

General#

\(\rho\) - Density (\(kg/m^3\))

\(M\) - Mass (\(kg\))

\(L\) - Length (\(m\))

\(t\) - Time (\(s\))

\(T\) - Temperature (\(K\) or \(^o C\))

\(\mathbf{v}\) - Velocity (\(m/s\))

Intro to Vector/Tensor Calculus#

\(\nabla\) - Del Operator

\(\nabla a\), \(\nabla \mathbf{v}\) - Gradient of scalar \(a\), gradient tensor of vector \(\mathbf{v}\)

\(\nabla \cdot \mathbf{v}\) - Divergence of vector \(\mathbf{v}\)

\(\nabla \times \mathbf{v}\) - Curl of vector \(\mathbf{v}\)

\(\nabla \cdot \nabla\)= \(\Delta\) - Laplacian

\(\delta_{ij}\) - Kronecker delta

\(\epsilon_{ijk}\) - Permutation symbol, Levi-Civita tensor

\(d/d t\) - derivative to time (when no dependence on other parameters)

\(\partial/\partial t\) - partial derivative to time

Stress and Tensors#

\(\bar{\bar{\mathbf{\sigma}}}\) - Stress tensor (\(N/m^2\))

\(\mathbf{t}\) - Traction, stress vector (\(N/m^2\))

\(\mathrm{tr}(\bar{\bar{\mathbf{\sigma}}})\) = \(p\) - trace of the stress tensor = pressure (\(N/m^2\))

\(\bar{\bar{\mathbf{\sigma'}}}\) - Deviatoric stress (\(N/m^2\))

Kinematics#

\(D/D t\) - material time derivative

\(\mathbf{a}\) - Acceleration vector (\(m/s^2\))

\(\mathbf{v}\) or \(\mathbf{v}'\) - Velocity vector (Eulerian or Material) (\(m/s\))

\(\mathbf{x}\) or \(\bf{\xi}\) - Position vector (Eulerian or Material) (\(m\))

\(\mathbf{u}\) - Displacement vector (\(m\))

\(\nabla \mathbf{u}\) - Displacement gradient tensor (\(unitless\))

\(\bar{\bar{\mathbf{\omega}}}\) - Infinitesimal strain rigid body rotation tensor (\(unitless\))

\(\bar{\bar{\mathbf{\varepsilon}}}\) - Infinitesimal strain internal deformation/strain tensor (\(unitless\))

Conservation Equations#

\(\mathbf{F}\) - Body force (\(N\))

\(\mathbf{f}\) - Body force per unit volume (\(N/m^3\))

\(\mathbf{q}\) - Heat flux (\(W/m^2\))

\(k\) - Thermal conductivity (\(W\))

\(H\) - Heat production per unit mass (\(W/kg\))

\(A\) - Heat production per unit volume (\(W/m^3\))

\(C_P\) - Heat capacity at constant pressure (\(J/kg K\))

\(\kappa\) = \(k/\rho/C_P\) - Thermal diffusivity (\(m^2/s\))

\(\mathbf{D}\) - Infinitesimal-strain strain rate tensor (\(s^{-1}\))

\(\lambda\) and \(\mu\) - elastic Lamé constants (\(N/m^2\))

\(K\) - Elastic bulk modulus (\(N/m^2\))

\(G\) = \(\mu\) - Elastic shear modulus \(N/m^2\)

\(E\) - Elastic Youngs modulus \(N/m^2\)

\(\nu\) - Elastic Poisson’s ratio

\(p\) - Hydrostatic pressure \(N/m^2\)

\(\zeta\) - Bulk viscosity \(Pa \hspace{0.1cm} s\) = \(N s/m^2\)

\(\eta\) - Shear viscosity \(Pa \hspace{0.1cm} s\)

\(\nu\)= \(\eta/\rho\) - Kinematic viscosity \(J s / kg\)

\(\mathbf{g}\) - Acceleration due to gravity \(m/s^2\)

Dimensional Analysis#

\(D\) - Diffusivity \(m^2/s\)

\(C\) - Concentration

\(H\) - Thickness \(m\)

\(h\) - External heat transfer coefficient

\(Pe\) - Peclet number

\(Re\) - Reynolds number

\(Ga\) - Galileo number

\(Fr\) - Froude number

\(\lambda\) - Wavelength of an instability \(m\)

\(\gamma\) - Surface tension \(N/m\)

\(Q\) - Rate of energy transfer \(W\)

\(V\) - Volumetric fluid flow rate \(m^3/s\)

Potential Flow#

\(\phi\) - Potential

\(k\) - Permeability

\(F\) - Flux

\(\xi\) - Residual

Turbulent and Non-Newtonian Flows#

\(f\) - Fanning Friction Factor

\(\mathbf{u}\) - Instantaneous velocity \(m/s\)

\(\mathbf{U}\) - Average velocity \(m/s\)

\(\mathbf{u^{'}}\) - Fluctuating component of velocity \(m/s\)

\(k\) - Turbulent kinetic energy \(J\)

\(\varepsilon\) - Turbulent dissipation rate

Interpolation Quadrature#

\(P_N(x)\) - Interpolated polynomial

\(\alpha_i\) - Weight for interpolation function

\(\phi_i\) - Basis functions for interpolation function

\(L(x)\) - Lagrange polynomial

\(l_i(x)\) - Lagrange basis polynomial

\(R_N(x)\) - Remainder function/Interpolation error

\(I_M\) - Integral by using midpoint rule

\(I_T\) - Integral by using trapezoidal rule

\(I_S\) - Integral by using Simpson’s rule

\(I_W\) - Integral by using Weddle’s rule

ODE Solvers#

\(t_0\) - Initial time

\(T\) - Upper limit of integral in time

\(\Delta t_n\) - Step size

\(\mathcal{O}\) - Big O approximation for higher order terms

\(\bar{f}\) - Average value of a function

\(\tau\) - Local truncation error

\(E\) - Global error

PDE Solvers#

\(c\) - Concentration

\(\kappa\) - Diffusivity coefficient

\(\xi\) - Computational coordinate

\(C\) - Courant number

\(r\) - r-parameter

\(k_m\) - Wavenumber

Finite Element Methods#

\(e\) - Single element

\(C\) - Constant

\(\phi\) - Basis function

\(\alpha\) - Weights

\(P_h\) - \(L^2\) norm

\(K\) - Discretisation matrix