4.2 Rheology#

Lecture 4.2
Saskia Goes, s.goes@imperial.ac.uk

Table of Contents#

Learning Objectives#

  • Understand basic properties of elastic and viscous rheology and understand how the choice of rheology leads to different forms of the momentum conservation equation

  • Using tensor analysis to obtain relations between the main isotropic elastic parameters

Rheology#

deformation (\(\boldsymbol{\varepsilon}\)) = rheology \(\cdot\) stress (\(\boldsymbol{\sigma}\))

Rheology describes the material response to stress, depends on material, pressure, temperature, time, deformation history, and enviroment (volatiles, water).

  • experiments under simple stress conditions

  • elastic, viscous, brittle, plastic rheologies

  • strain evolution under constant stress, stress-strain rate diagrams

  • thermodynamics + experimental parameters

  • ab-initio calculations

Recap: Fluid - Solid#

What is a solid?

  • A solid acquires finite deformation under stress

  • stress \(\boldsymbol{\sigma}\) ~ strain \(\boldsymbol{\varepsilon}\)

What is a fluid?

  • A material that flows in response to applied stress

  • stress \(\boldsymbol{\sigma}\) ~ strain rate \(\mathbf{D}\)

../_images/Fluid-vs-solid.PNG

Elasticity#

  • linear response to load applied

  • instantaneous

  • completely recoverable

  • below threshold (yielding) stress

  • dominates behaviour of coldest part of tectonic plates on time scales of up to 100 m.y. => fault loading

  • on time scale of seismic waves, the whole Earth is elastic

  • \(\sigma_{ij} = C_{ijkl} \epsilon_{kl}\) - Hooke’s law
    \(C_{ijkl}\) - rank 4 elasticity tensor, \(3^4\) elements, up to 21 independent

../_images/stress-strain.PNG

Elasticity Tensor#

  • \(C_{ijkl}\), \(3^4 = 81\) elements (for \(n = 3\))

  • symmetry of \(\sigma_{ij}\) and \(\varepsilon_{kl}\)
    \(\Longrightarrow\) only 36 independent elements

\[P = \mathbf{\sigma :D} \approx \boldsymbol{\sigma} : D \boldsymbol{\varepsilon} / Dt = DU / Dt\]
  • conservation of elastic energy \(U = \boldsymbol{\sigma} : \boldsymbol{\varepsilon} = \mathbf{C} : \boldsymbol{\varepsilon} : \boldsymbol{\varepsilon} \geq 0\)
    \(\Longrightarrow C_{ijkl} = C_{klij} \)
    \(\Longrightarrow\) only 21 independent elements - most general form of \(\mathbf{C}\)

  • other symmetries further reduce the number of independent elements

3 isotropic rank 4 tensors: \(\delta_{ij}\delta_{kl}, \delta_{ik}\delta_{jl}, \delta_{il} \delta_{jk}\)

For example, for isotropic media, only 2 independent elements (\(\lambda, \mu\)):

\[ \sigma_{ij} = \lambda \delta_{ij} \delta_{kl} \varepsilon_{kl} + \alpha \delta_{ik} \delta_{jl} \varepsilon_{kl} + \beta \delta_{il} + \delta_{jk} \varepsilon_{kl}\]
\[ = \lambda \delta_{ij} \varepsilon_{kk} + \alpha \varepsilon_{ij} + \beta \varepsilon_{ji} \]
\[ = \lambda \delta_{ij} \theta + (\alpha + \beta ) \varepsilon_{ij} \]
\[ \Longrightarrow \alpha_{ij} = \alpha \theta \delta_{ij} + 2 \mu \varepsilon_{ij} \]

Hooke’s Law for Isotropic Material#

2 independent coefficients

Lamé constants
\(\mathbf{\lambda}\) and \(\mathbf{\mu}\): \(\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2 \mu \varepsilon_{ij}\)

Bulk and shear modulus
\(K\) and \(G\):
\( -p = K \theta \) - isotropic           \(-p = \sigma_{kk} /3 \)
\( \sigma_{ij}^{'} = G \varepsilon_{ij}^{'} \) - deviatronic         \( \theta = \varepsilon_{kk}\)

Detemine relation to Lamé constants in Exercise 5

Young’s modulus and Poisson’s ratio
\(E\) and \(\nu\) : \(E = \sigma_{11} / \varepsilon_{11}, \nu = -\varepsilon_{33} / \varepsilon_{11}\) (uniaxial stress)

Determine in optional Exercise 6

Wave Equation#

For infinitesimal deformation:
spatial coordinates ≈ material coordinates

\(v_i\) (spatial) \(\approx \partial u_i / \partial t\)
\(a_i\) (spatial) \(\approx \partial v_i / \partial t = \partial^2 u_i / \partial t^2\)

Equation of motion: \(f_i + \partial \sigma_{ij} / \partial x_{j} = \rho \partial^2 u_i / \partial t^2\) (1)
Elastic rheology: \(\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2 \mu \varepsilon_{ij}\) (2)
Substitute (2) in (1) if (infinitesimal) deformation is consequence of force balance

\[ \partial \sigma_{ij} / \partial x_{j} = \lambda \partial \varepsilon_{kk} / \partial x_i + \mu \partial (\partial u_i / \partial x_j + \partial u_j / \partial x_i) / \partial x_j \]
\[ = \lambda \partial(\partial u_k / \partial x_k) / \partial x_i + \mu \partial^2 u_i / \partial^2 x_j + \mu \partial ( \partial u_j / \partial x_j) \partial x_i\]
\[ \mathbf{\nabla \cdot \boldsymbol{\sigma}} = (\lambda + \mu) \nabla (\nabla \cdot \mathbf{u}) + \mu \nabla^2 \mathbf{u}\]

Using: \(\nabla^2 \mathbf{u} = \nabla (\nabla \cdot \mathbf{u}) - \nabla \times \nabla \times \mathbf{u}\)

\[ \Longrightarrow \rho \partial^2 \mathbf{u} / \partial t^2 = \mathbf{f} + (\lambda + 2 \mu) \nabla (\nabla \cdot \mathbf{u}) - \mu \nabla \times \nabla \times \mathbf{u} \]

Where \((\lambda + 2 \mu) \nabla (\nabla \cdot \mathbf{u})\) represents compressional deformation,
and \(\mu \nabla \times \nabla \times \mathbf{u}\) represents shear deformation

../_images/ps-waves.PNG

Viscous flow#

  • steady state flow at constant stress

  • permanent deformation

  • linear (Newtonian) or non-linear (e.g., Powerlaw) relation between strain rate and stress

  • isotropic stress does not cause flow

  • on timescales > years base tectonic plates and mantle deform predominantly viscously -> plate motions, postseismic deformation, but also glaciers, magmas

../_images/viscous-flow.PNG

Hydrostatics#

Fluids can not support shear stresses
i.e. if in rest/rigid body motion: \(\boldsymbol{\sigma} \cdot \mathbf{\hat{n}} = \lambda \mathbf{\hat{n}}\)
and this normal stress is the same on any plane: \(\mathbf{\sigma} = -p \mathbf{I}\)

p is hydrostatic pressure In force balance:
\(\nabla \cdot \boldsymbol{\sigma} + \mathbf{f} = 0\)
\(-\nabla p = - \mathbf{f}\)

In gravity field \(\frac{\partial p}{\partial z} = \rho g \Longrightarrow p_2 - p_1 = \rho g h\)
where \(h = z_2 - z_1\)

Newtonian Fluids#

In general motion: \(\boldsymbol{\sigma} = -p \mathbf{I} + \boldsymbol{\sigma}^{'}\)

In Newtonian fluids, deviatoric stress varies linearly with strain rate, \(\mathbf{D}\)

\[ D_{ij} = ( \partial v_i / \partial x_j + \partial v_j / \partial x_i ) / 2 \]

For isotropic, Newtonian fluids, 2 material parameters:

Viscous stress tensor, \(\sigma_{ij}^{'} = \zeta D_{kk} \delta_{ij} + 2 \eta D_{ij}\)

where \(\zeta\) is bulk viscosity and \(\eta\) (shear) viscosity, \(\Delta = D_{kk} = \nabla \cdot \mathbf{v}\)

\[ \mathbf{\sigma} = ( -p + \varsigma \Delta) \mathbf{I} + 2 \eta \mathbf{D} \]

\(p\) does not always mean normal stress: \(\sigma_{kk} = -3p + (3 \zeta + 2 \eta) D_{kk}\)

Consider a Newtonian shear flow with velocity field \(v_1 ( x_2 ) , v_2 = v_3 = 0\)

What is \(\mathbf{D}\)? What is \(\mathbf{\sigma}\)?

Exercise 7

Illustrates that \(\eta\) represents resistance to shearing

Recap#

  • Conservation equations

  • Energy equation

  • Rheology

  • Elasticity and Wave Equation

  • Newtonian Viscosity and Navier Stokes

More reading on the topics covered in this lecture can be found in, for example: Lai et al. Ch 4.14-4-16, 6.18, Ch 5.1-5.6, Ch 6.1-6.7; Reddy parts of Ch 5 & Ch 6

Practise#

For this part of the lecture, first try Exercise 5 and 7 in chapter4.ipynb

Then complete any remaining exercises in chapter4.ipynb:
Exercise 1, 2, 3, 4, 5, 7, 8
• Additional practise: in the text
• Advanced practise: Exercise 6